Elliptic Fibers over non-Perfect Residue Fields
نویسنده
چکیده
Kodaira and Néron classified and described the geometry of the special fibers of the Néron model of an elliptic curve defined over a discrete valuation ring with a perfect residue field. Tate described an algorithm to determine the special fiber type by manipulating the Weierstrass equation. In the case of non-perfect residue fields, we discover new fiber types which are not on the Kodaira-Néron list. We describe these new types and extend Tate’s algorithm to deal with all discrete valuation rings. Specifically, we show how to translate a Weierstrass equation into a form where the reduction type may be easily determined. Having determined the special fiber type, we construct the regular model of the curve with explicit blow-up calculations. We also provide tables that serve as a simple reference for the algorithm and which succinctly summarize the results.
منابع مشابه
The Number of Rational Points on Elliptic Curves y2 = x3 + a3 on Finite Fields
In this work, we consider the rational points on elliptic curves over finite fields Fp. We give results concerning the number of points Np,a on the elliptic curve y ≡ x + a(mod p) according to whether a and x are quadratic residues or non-residues. We use two lemmas to prove the main results first of which gives the list of primes for which -1 is a quadratic residue, and the second is a result ...
متن کاملCongruences of models of elliptic curves
Let OK be a discrete valuation ring with field of fractions K and perfect residue field. Let E be an elliptic curve over K, let L/K be a finite Galois extension and let OL be the integral closure of OK in L. Denote by X ′ the minimal regular model of EL over OL. We show that the special fibers of the minimal Weierstrass model and the minimal regular model of E over OK are determined by the infi...
متن کاملLarge Family of Sequences from Elliptic Curves over Residue Class Rings
SUMMARY An upper bound is established for certain exponential sums on the rational points of an elliptic curve over a residue class ring Z N , N = pq for two distinct odd primes p and q. The result is a generalization of an estimate of exponential sums on rational point groups of elliptic curves over finite fields. The bound is applied to showing the pseudoran-domness of a large family of binar...
متن کاملA high speed coprocessor for elliptic curve scalar multiplications over Fp
We present a new hardware architecture to compute scalar multiplications in the group of rational points of elliptic curves defined over a prime field. We have made an implementation on Altera FPGA family for some elliptic curves defined over randomly chosen ground fields offering classic cryptographic security level. Our implementations show that our architecture is the fastest among the publi...
متن کاملNon-constant genus 2 curves with pro-Galois covers
For every odd prime number p, we give examples of non-constant smooth families of genus 2 curves over fields of characteristic p which have pro-Galois (pro-étale) covers of infinite degree with geometrically connected fibers. The Jacobians of the curves are isomorphic to products of elliptic curves.
متن کامل